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Motivation ddRAD Sequencing «iilil)-= Why simulate ddRAD data?
The availability of low cost sequencing technologies Reduced representation sequencing technique, used &Q Provide an easily verifiable ground truth that can be

allows the evaluation of thousands of genetic for inter- and intra-population genotyping studies. used to evaluate analysis pipelines.
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Simulation Workflow Dataset Structure Individual Event Types

Simulation process to create a RAGE dataset: Dataset Common ~90%

Highly Repetitive Loci Reads without coverage deviation and mutations.
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Coverage in ddRAD Data Coverage Model Simulated Coverage Distribution
= number of reads per locus To account for the specific behavior of different groups of reads, three different models are used: Example of combined simulated coverage using
The coverage varies with sequencing technology, a=6, B=2.5 n=42. ds=30. a uniform model for
library preparation and biological effects. For an HRLs and no PCR duplicates:
individual ¢ € 7 at locus ¢ € £ the coverage is Singletons, by definition, have a coverage of 1. The amount of singletons varies with the size of the
denoted as: dataset and the quality of library preparation. Hence, a fraction of the expected number of reads is used to
simulate singleton reads. 0.10
I
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e , The distribution of coverage values varies with different datasets due to library preparation, biological
— COV@,E(CLZ) : S : 2
—y effects, and the sequencing process. Hence, an adaptable function is needed for sampling coverage values. 5
| | This is solved using a beta-binomial distribution (BBD). The BBD has three parameters: g %
The observed coverage in rad data mainly depends x
o 0.04
In real data the coverage seldomly reaches d. £ >0  Shape parameter controlling the right tailing, higher value — more right-skew %
Hence, the coverage is simulated as a function of dg N | |
using a probabilistic process. n & Ng Number of trials, maximum number of events 0.02
Distribution of coverage Using the shape parameters, the BBD can be fitted to many different observed coverage patterns: o .||I|||““ ‘I 777777777777 L .
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Y Ul AR T M Future Work
o Adding PCR duplicates will smooth out the distinct
All loci, including singletons. In order to make ds the expecteq coverage value, the mean of the BBD has to be moved. This is done by shapes and approach the observed coverage
chosing the . parameter depending on & and (3: i Asuens.
ds-(a+p)
E(X)= 2% X ~ BBD(a, 8,1 = | = .
( ) a+p ( B, ) n 0" Choosing BDD parameters can be automated by

(algorithmically) fitting the distribution to observed
coverage distributions in sample datasets.

The coverage of HRLs can reach values beyond 1000. To simulate this, a distribution with high variance is

needed. Finding a distribution that models the observed values well is still a topic of research. Both a A more accurate model for the simulation of HRL
Loci of size >= 3. Poisson distribution and a discrete uniform distribution are currently being evaluated. coverages still needs to be found.
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